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Abstract. The scanning electrostatic force microscopy (SEFM) can acquire information of surface struc-
tures in a non-contact way. We calculate the electrostatic force between the charged tip and polarized
surface structure in SEFM in the framework of self-consistent integral equation formalism (SCIEF), incor-
porating the image method to treat the electrostatic coupling of substrate and tip. We consider two kinds
of surface structures, one is the topographic structure on the surface, the other is the dielectric structure
embedded in the substrate. The force pattern of the topographic structure shows a protrusion around
the surface structure. However, the force pattern displays a hollow around an embedded structure with a
dielectric constant less than that of substrate medium. For an embedded structure with a larger dielectric
constant, the force pattern exhibits a protrusion, and the force signal is much weaker than that of the
topographic structure. Therefore, it is expected that one may identify these surface structures from the
pure electrostatic force information in SEFM. The force signal of the densely arranged dielectric pads is
simply the superposition of force signal of each pad individually, the interference effect of electric field is
not remarkable.

PACS. 61.16.Ch Scanning probe microscopy: scanning tunneling, atomic force, scanning optical, magnetic
force, etc. – 41.20.Cv Electrostatics; Poisson and Laplace equations, boundary-value problems –
68.35.Bs Surface structure and topography

1 Introduction

The scanning tunneling microscopy (STM) and the scan-
ning force microscopy (SFM) have proven to be the pow-
erful ways to collect information of surface structures
[1–3]. When imaging soft or weakly bound material such
as liquid adsorbates, polymers and biological samples, var-
ious operating principles of SFM were proposed and the
SFM’s are operated in noncontact mode to reduce surface
destruction. The scanning electrostatic force microscopy
(SEFM) can be utilized to perform noncontact imaging of
both conducting and insulating materials because electro-
static force (Coulomb interaction) possesses a much longer
interaction range comparing with the van der Waals force
in atomic force microscopy (AFM) and tunneling current
in STM. Such an instrument (SEFM) has been applied to
image thin film of water [4,5], ferroelectric crystal [6], and
conducting electrode [7].

In SEFM a bias voltage is applied to a conductive
AFM tip with respect to a remote electrode, for exam-
ple, the sample holder [4]. The strong electric field around
the charged tip induces a polarization inside nearby the
sample. Because of the long-range nature of electrostatic
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interaction, the force between the charged tip and polar-
ized sample can be detected at a distance of several hun-
dreds of angstroms.

In order to extract the information of surface struc-
ture from the electrostatic force pattern, the distribution
of electrostatic field around the mesoscopic and nanomet-
ric surface structures is desired to be known. It requires
to solve Poisson equation satisfied by the local electric
field, incorporating the match of boundary conditions at
each interface of the system including the sample, tip, and
substrate. This is a relatively difficult task for the sample
with a complex profile and an arbitrarily dielectric dis-
tribution. However, a general solution can be acquired in
terms of the self-consistent integral equation formalism
(SCIEF) as this approach avoids the complicated match-
ing procedure of boundary conditions. Such a method has
been widely applied in scattering of electromagnetic wave
[8,9] and near field optics [10,11]. More recently, we have
utilized this method to treat the electrostatic problem for
mesoscopic surface structure in SEFM [12].

In this work we consider two kinds of surface struc-
tures in SEFM. One is the topographic structure lying
on the surface, the other is the dielectric structure em-
bedded in the substrate and having a different dielectric
constant from that of the substrate medium. We calculate
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Fig. 1. The schematic configuration of SEFM. (a) Topographic
surface structure; (b) embedded dielectric structure. The tip
has a bias voltage of V0 = 5 V and a radius of R = 50 nm. The
dielectric constant of substrate is εs = 2.5.

the distributions of electric field and the electrostatic force
exerting on the scanning tip of SEFM in the framework
of SCIEF in the real space representation. Comparing the
electrostatic force pattern for these two kinds of surface
structures, we can obtain more detailed and clearer un-
derstanding on the relationship between the force pattern
and the surface structure in SEFM.

This paper is arranged as follows. In Section 2 the
technique of Green’s function and image method are com-
bined to derive the self-consistent integral equation sat-
isfied by the electric field of the complex system for two
kinds of surface structures. In Section 3 we calculate the
electrostatic force patterns for a mesoscopic dielectric cu-
bic pad lying on the surface and embedded in the substrate
medium, respectively. We also investigate the interference
effect of electrostatic force signal between adjacent sample
particles. A brief conclusion is made in Section 4.

2 Real-space self-consistent method
for SEFM

In a simplified way, the conductive AFM tip in SEFM is
modeled as a conductive sphere with a radius of R and
a potential of V0. There are two kinds of surface struc-
tures, one is a topographic surface structure lying on the
surface, the other is a dielectric surface structure embed-
ded in the substrate medium and having a different di-
electric constant from that of the substrate medium. The
schematic configuration of SEFM is displayed in Figures
1a and b for these two kinds of surface structures, re-
spectively. When such a spherical tip is scanned above
a perfect semiinfinite substrate with a dielectric constant
εs, the electric field E0(r) in the space above and below
the interface can be derived analytically in terms of the
standard image charge method [13]. The charge density
distribution σ0(r) on the surface of tip can be evaluated.
Thus the electrostatic force F0 between the tip and the
substrate can be calculated. The sample embedded in this
electric field is polarized and such a polarization serves
as the secondary field source. The elementary charge dis-
tribution on the surface of tip is then modified, and the
local electric field is perturbed. Finally the secondary and

elementary field source reach a self-consistent distribution
which is the solution of the complex electrostatic prob-
lem in SEFM. From the self-consistent electric field of the
complex system, one can calculate the electrostatic force
exerting on the tip straightforwardly.

2.1 Self-consistent equations for topographic surface
structure

The self-consistent local field inside the sample E(r) in-
duces a polarization P(r) = [ε(r) − 1]E(r), which serves
as the secondary field source. Here ε(r) is the dielectric
distribution of the sample. Taking into account the cou-
pling of the substrate and the conductive spherical tip,
the local field E(r) and polarization P(r) both are modi-
fied. The electric field due to the polarization P(r) can be
derived through the electrostatic potential [13,14]. More
conveniently, we prefer to employ the scattering theory of
electromagnetic wave. According to this theory, the sec-
ondary field induced by the polarization P(r) reads [11]

Es(r) =

∫
Vs

(∇∇+ k2)G(r, r′; k) ·P(r′)d3r′, (1)

where the Green’s function is given by

G(r, r′; k) =
exp(ik|r− r′|)

4π|r− r′|
,

and k is the wavenumber of electromagnetic wave in free
space, Vs the region of sample scatterer. This formula is
valid in the whole space, i.e., inside and outside the sam-
ple. Let k = 0, it reduces to an electrostatic case and the
formula reads

Es(r) =

∫
Vs

g0(r, r′) ·P(r′)d3r′, (2)

where the dyadic Green’s function g0(r, r′) = ∇∇G(r, r′)
has the matrix element as

gij0 (r, r′) =
∂2

∂xixj
G(r, r′), xi, xj = x, y, z,

with the Green’s function of the Coulomb interaction

G(r, r′) =
1

4π|r− r′|
·

The coupling of the substrate and tip can be evaluated
through the image method. It requires us to derive the
image polarization distribution of P(r) with respect to the
substrate and tip. For convenience, we first treat the case
of time-dependent electromagnetic field, then extrapolate
to the limit of electrostatic field which is just the special
case of electromagnetic field with zero frequency.

Assume that the polarized charge ρ(r)d3r oscillates
with a velocity v(r) and produces the polarized current
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j(r)d3r = ρ(r)v(r)d3r. Such a polarized current induces
an image current with respect to the substrate as

jis(ris)d
3ris = ρis(ris)vis(ris)d

3ris

= −γ1ρ(r)[vx(r), vy(r),−vz(r)]d3r

= −γ1[jx(r), jy(r),−jz(r)]d3r, (3)

where γ1 = (εs − 1)/(εs + 1) is the image factor, and
ris is the image of r with respect to the substrate. The
time-dependent polarized current j(r) is related to the
polarization P(r) as j(r) = −iωε0P(r), where ω is the
frequency of oscillating charge [11]. Then the image po-
larization Pis(ris) is related to P(r) as

Pis(ris)d
3ris = −γ1[Px(r), Py(r) − Pz(r)]d3r. (4)

One can find the image polarization with respect to the
semiinfinite substrate Pis(ris) is anti-parallel in the x and
y axes, and parallel in the z axis with the secondary po-
larization P(r).

To obtain the image current with respect to the con-
ductive spherical tip jit, we first investigate the oscillating
velocity of image polarized charge. According to standard
image method [13], for the case of a conductive sphere
with a fixed potential, the polarized charge ρ(r)d3r in-
duces an image charge ρit(rit)d

3rit = −α(r)ρ(r)d3r inside
the sphere. The image charge is located at the image po-
sition rit = α2(r)r with the image factor α(r) = R/ | r |.
The oscillating velocity is

vi(rit) =
drit
dt

=
d

dt
[α2(r)r] = α2(r)

{
v(r) − 2[r̂ · v(r)]r̂

}
,

(5)
where r̂ = r/|r| denotes a unit vector. Then the image
current is

jit(rit)d
3rit = ρit(rit)vi(rit)d

3rit

= −α(r)ρ(r)d3r× α2(r)
{
v(r) − 2[r̂ · v(r)]r

}
= −α3(r)

{
j(r) − 2[r̂ · j(r)]r̂

}
d3r. (6)

The corresponding image polarization reads

Pit(rit)d
3rit = −α3(r)

{
P(r) − 2[r̂ ·P(r)]r̂

}
d3r. (7)

The electric field induced by the two image polariza-
tion distributions Pis(ris) and Pit(rit) can be evaluated
straightforwardly according to equation (2). The electric
field modified by the substrate can be expressed as

Eis(r) =

∫
Vis

g0(r, r′is) ·Pis(r
′
is)d

3r′is

=

∫
Vs

gis(r, r
′) ·P(r′)d3r′, (8)

where the dyadic function is given by

gis(r, r
′) = −γ1


∂2

∂x2

∂2

∂x∂y
−

∂2

∂x∂z
∂2

∂y∂x

∂2

∂y2
−

∂2

∂y∂z
∂2

∂z∂x

∂2

∂z∂y
−
∂2

∂z2

G(r, r′is)

with the coordinate r′is in the image region of sample with
respect to the substrate. The coupling effect of substrate
represented by gis(r, r

′) decays cubically with respect to
1/|r− r′is|.

The electric field perturbed by the conductive spherical
tip reads

Eit(r) =

∫
Vit

g0(r, r′it) ·Pit(r
′
it)d

3r′it

=

∫
Vs

git(r, r
′) ·P(r′)d3r′, (9)

where the dyadic function git(r, r
′) has the matrix element

as

gijit (r, r
′) = −α3(r′)

[ ∂2

∂xixj
G(r, r′it)

−2
∑
k

∂2

∂xixk
G(r, r′it)x̂kx̂j

]
,

xi, xj , xk = x, y, z, x̂i, x̂j , x̂k = x̂, ŷ, ẑ,

with the coordinate r′it in the image region of sample
with respect to the tip. The dyadic function git(r, r

′) is
cubically proportional to the image factor α, thus it also
decays cubically with respect to 1/|r− r′it|.

So far we have yielded the local electric field polarizing
the sample, which is composed of four terms: the unper-
turbed field E0(r), the field Es(r) induced by the polariza-
tion of sample, and the coupled fields Eis(r) and Eit(r),
which are induced by the image polarization with respect
to the substrate and tip, respectively. The rigorous electric
local field should include the contributions of the coupling
of tip with the image polarization Pis(ris) and the cou-
pling of the substrate with the image polarization Pit(rit).
Such multiple image contributions are proportional to the
multiplication of two image effects denoted by gis and git.
Considering the fast decaying feature of these two dyadic
functions, the multiple image contributions are small and
can be neglected. Then we have

E(r) = E0(r) + Es(r) + Eis(r) + Eit(r). (10)

Inserting equations (2, 8, 9) into equation (10), we
can derive the self-consistent integral equation satisfied
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by the local field E(r) as

E(r) = E0(r) +

∫
Vs

g0(r, r′) ·P(r′)d3r′

+

∫
Vs

gis(r, r
′) ·P(r′)d3r′+

∫
Vs

git(r, r
′) ·P(r′)d3r′

= E0(r) +

∫
Vs

g(r, r′) ·P(r′)d3r′

= E0(r) +

∫
Vs

g(r, r′) · [ε(r′)− 1]E(r′)d3r′, (11)

where the dyadic function of the complex system is given
by

g(r, r′) = g0(r, r′) + gis(r, r
′) + git(r, r

′).

2.2 Self-consistent integral equation for embedded
dielectric structure

The self-consistent integral equation for embedded dielec-
tric structure can be deduced in the same framework as
the case of the topographic surface structure.

The secondary field source induced by the charged tip
above the surface now is P(r) = [ε(r)−εs]E(r) [11], where
ε(r) is the dielectric distribution of the embedded struc-
ture, E(r) is the local electric field. The secondary field
induced by this polarization is

Es(r) =

∫
Vs

g0(r, r′) ·P(r′)d3r′, (12)

where the dyadic Green’s function is

g0(r, r′) =
1

εs
∇∇G(r, r′), with G(r, r′) =

1

4π|r− r′|
·

The coefficient 1/εs in g0(r, r′) is due to the screened
Coulomb interaction in dielectric medium.

The electric field due to the coupling of substrate can
be attributed to the image polarization

Pis(ris)d
3ris = γ1[Px(r), Py(r) − Pz(r)]d3r. (13)

Such a modified field reads

Eis(r) =

∫
Vs

gis(r, r
′) ·P(r′)d3r′, (14)

where the dyadic function is

gis(r, r
′) =

γ1

εs


∂2

∂x2

∂2

∂x∂y
−

∂2

∂x∂z
∂2

∂y∂x

∂2

∂y2
−

∂2

∂y∂z
∂2

∂z∂x

∂2

∂z∂y
−
∂2

∂z2

G(r, r′is)

with the coordinate r′is in the image region of sample with
respect to the substrate.

The electric field coupled by the spherical conductive
tip can be attributed to the image polarization as

Pit(rit)d
3rit = −γ2α

3(r){P(r) − 2[r̂ ·P(r)]r̂}d3r, (15)

where γ2 = 2/(1 + εs) is the image factor describing the
response of electrostatic field below an interface to the
source above the interface. Then the electric field per-
turbed by the conductive spherical tip reads

Eit(r) =

∫
Vs

git(r, r
′) ·P(r′)d3r′, (16)

where the dyadic function git(r, r
′) has the matrix element

as

gijit (r, r
′) = −γ2

2α
3(r′)

[ ∂2

∂xixj
G(r, r′it)

−2
∑
k

∂2

∂xixk
G(r, r′it)x̂kx̂j

]
,

xi, xj , xk = x, y, z, x̂i, x̂j , x̂k = x̂, ŷ, ẑ,

with the coordinate r′it in the image region of sample with
respect to the tip.

The coupling interaction dyadic functions denoted by
gis and git also decay inverse-cubically with respect to
the source-field distance. Taking into account this fast
decaying character, the multiple image contributions can
be neglected, similar to the case of the topographic sur-
face structure. Then we obtain the self-consistent integral
equation as

E(r) = E0(r) + Es(r) + Eis(r) + Eit(r)

= E0(r) +

∫
Vs

g0(r, r′) ·P(r′)d3r′

+

∫
Vs

gis(r, r
′) ·P(r′)d3r′ +

∫
Vs

git(r, r
′) ·P(r′)d3r′

= E0(r) +

∫
Vs

g(r, r′) ·P(r′)d3r′

= E0(r) +

∫
Vs

g(r, r′) · [ε(r′)− εs]E(r′)d3r′, (17)

where the dyadic function of the complex system for the
embedded surface structure is given by

g(r, r′) = g0(r, r′) + gis(r, r
′) + git(r, r

′).

2.3 Formulas for numerical simulations

The common method for solving the integral equations
(11, 17) is to discretize the region of sample into a number
of sampling cells, and then solve a set of linear simulta-
neous equations for the fields at the discretized sampling
cells. Let E(ri) denote the field at the ith sampling cell.
Then equation (11) leads to a set of linear simultaneous
equations as

E(ri) = E0(ri) +
n∑
j=1

Wjg(ri, rj)[ε(rj)− 1]E(rj), (18)
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f(r, r′) =



W1[ε(r1)− 1]g(r1, r1) W2[ε(r2)− 1]g(r1, r2) · · · Wn[ε(rn)− 1]g(r1, rn)

W1[ε(r1)− 1]g(r2, r1) W2[ε(r2)− 1]g(r2, r2) · · · Wn[ε(rn)− 1]g(r2, rn)

· · · · · · · · · · · ·
· · · · · · · · · · · ·

W1[ε(r1)− 1]g(rn, r1) W2[ε(r2)− 1]g(rn, r2) · · · Wn[ε(rn)− 1]g(rn, rn)


.

where Wj represents the volume of the jth sampling cell
and n is the total number of sampling cells. The set of un-
known vectors {E(ri, ω)} can be determined by the stan-
dard algebraic manipulation.

Introducing two supervectors

E = {E(r1); E(r2); · · · ; E(rn)}

and
E0 = {E0(r1); E0(r2); · · · ; E0(rn)}

as well as the (3n× 3n) matrix

g = I− f(r, r′),

where I represents an identity matrix with 3n×3n dimen-
sion, and f(r, r′) is a (3n× 3n) matrix defined by

See equation above.

Equation (18) then becomes

E0 = gE. (19)

When the dimension of the matrix g takes an appropriate
value, then, it is possible to give an accurate numerical
solution for the field distribution contained in the super-
vector E(r) in the self-consistent form.

The integral equation (17) for the embedded dielectric
structure can be numerically solved in the same way as
equation (11) for topographic surface structure. The local
electric field can be obtained in the self-consistent form.

2.4 Electrostatic forces exerting on the tip

When the local electric field of sample E(r) is solved self-
consistently, the secondary field induced by the polariza-
tion of sample P(r) can be derived straightforwardly. In
the case of the topographic surface structure it is

E(r) = Es(r) + Eis(r)

=

∫
Vs

g0(r, r′) ·P(r′)d3r′ +

∫
Vs

gis(r, r
′) ·P(r′)d3r′

=

∫
Vs

[g0(r, r′) + gis(r, r
′)]·[ε(r′)− 1]E(r′)d3r′. (20)

Here we also neglect the coupling of substrate with the
image polarization Pit(r). In the discretized form the field
is

E(r) =
n∑
j=1

Wj [g0(r, rj)+gis(r, rj)][ε(rj)−1]E(rj). (21)

For the embedded dielectric surface structure, the sec-
ondary field induced by the polarization of sample P(r)
reads

E(r) =

∫
Vs

gs(r, r
′) ·P(r′)d3r′

=

∫
Vs

gs(r, r
′) · [ε(r′)− εs]E(r′)d3r′, (22)

where the dyadic functions gs(r, r
′) is

gs(r, r
′) = γ2∇∇G(r, r′).

In the discretized form the field is

E(r) =
n∑
j=1

Wjgs(r, rj)[ε(rj)− εs]E(rj). (23)

The secondary electric field induced by the surface struc-
ture exerts on the surface charge of the tip and induces
the additional electrostatic force due to the presence of
sample. The additional force F1 can be calculated by

F1 =
m∑
i=1

siE(ri)σ0(ri), (24)

where si represents the area of the ith sampling cell, and
m is the total number of sampling cells on the surface
of tip. The whole electrostatic field F exerting on the tip
is the superposition of the unperturbed force F0 and the
additional force F1, i.e., F = F0 + F1.

It is evident that the unperturbed force F0 does not
contain any information of the surface structure, this force
only serves as a background force. Thus the surface struc-
tural signal of electrostatic force can be defined as the
normalized force signal as

I =
Fz

F0
· (25)

Here Fz is the vertical z component of the whole force F,
while F0 is the force in the absence of the sample and is
along the z axis. Other horizontal components of F do not
affect the operation of conductive AFM tip, and are thus
neglected.

When the tip is scanned above the surface structure,
we have to solve the self-consistent integral equations at
each observation site. Then we calculate the electrostatic
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force and subsequently the normalized force signal accord-
ing to equation (25). In this way, we can obtain the scan-
ning force pattern, which should reflect the information of
surface structure such as topography, geometric size, and
dielectricity, etc.

3 Numerical simulation results

In our numerical simulations, we choose the geometric
and physical parameters as follows: the bias voltage is
V0 = 5 V, the radius of tip R = 50 nm, and the dielectric
constant of the substrate εs = 2.5.

We first consider a cubic topographic surface struc-
ture. The sample has a dielectric constant of ε = 2.5 and
a sidelength of a = 100 nm. Assume that the tip is op-
erated in the constant-height mode and scanned in the
observation plane of Z. The three dimensional (3D) per-
spective views of the normalized force signal at different
scanning planes of Z = 175, 200, and 225 nm are displayed
in Figures 2a, b, and c, respectively. It is evident that the
force signal reaches a maximum when the tip is centered
right with the sample, and the signal decays rapidly when
increasing the tip-sample distance. This is due to the fast
decaying feature of electrostatic field induced by the po-
larized sample. The force signal also decays when the tip
deviates from the center position of the sample. The max-
imum normalized force signal at the three scanning planes
are Im = 3.14, 2.11, and 1.65, respectively. Furthermore,
the apparent size of sample obtained from the force signal
grows larger with the increase of Z. This means that more
information of surface structure is lost at a higher scan-
ning plane. If we define such an apparent size as the full
width at half maximum of the normalized force signal at
a certain scanning plane along the side direction of cube,
then the apparent size of the cubic sample is about 140,
160, and 180 nm at the three planes of Z = 175, 200, and
225 nm, respectively. The apparent size is approximately
linearly proportional to the vertical tip-sample distance.

We next investigate the embedded dielectric structure
shown in Figure 1b. We also assume that the sample is a
cubic dielectric pad with a sidelength of a = 100 nm. Two
cases of sample dielectricity should be taken into account,
i.e., the sample has a dielectric constant either less or
larger than that of substrate medium.

As the first case we assume that a hollow (vacuum) is
embedded in the substrate. Then the dielectric constant
of sample is ε = 1.0. When the tip of SEFM is operated
in the constant-height mode and scanned on a certain ob-
servation plane of Z, we solve the self-consistent integral
equations for the embedded dielectric surface structure at
each observation point and then obtain the synthesized
electrostatic force pattern. Figures 3a, b, and c display
the 3D perspective views of the normalized force signal
for the sample at different embedded depths as (a) d = 0,
(b) d = 20, and (c) d = 40 nm, respectively. The tip is
scanned at a fixed observation plane of Z = 100 nm.

The force patterns demonstrate a hollow right at the
site of embedded dielectric structure, quite well related to
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Fig. 2. 3D perspective view of the normalized force intensity
I = F/F0 for a cubic pad lying on the surface. The probe is
scanned at different observation planes of (a) Z = 175, (b) Z =
200, and (c) Z = 225 nm. The pad has a dielectric constant of
ε = 2.5 and a sidelength of a = 100 nm.

the structure itself (a hollow). The electrostatic force sig-
nal becomes smallest when the tip is centered right with
the sample structure. Since there is no polarization in the
hollow, thus the electrostatic force exerting on the tip in
the hollow region is reduced compared with other observa-
tion region beyond the hollow. The perturbed electrostatic
force induced by the hollow is decreased when increasing
the embedded depth, therefore, the signal contrast be-
comes worse. This is also due to the fast decaying feature
of secondary electric field. The minimum normalized force
signal at the three embedded depths is (a) Im = 0.83,
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Fig. 3. 3D perspective view of the normalized force inten-
sity I = F/F0 for a cubic hollow (vacuum) embedded in the
substrate. The probe is scanned at an observation plane of
Z = 100 nm. The sidelength of hollow is a = 100 nm. The
embedded depth of hollow is (a) d = 0, (b) d = 20, and (c)
d = 40 nm, respectively. Note the three figures are ploted in
the different scales of z-axis for a clarity of view.

(b) Im = 0.92, and (c) Im = 0.96. The extended region
of the signal contrast increases with the increase of the
embedded depth. The apparent size of the hollow sam-
ple grows approximately linearly with respect to the em-
bedded depth (equivallently the vertical tip-sample dis-
tance). For three embedded depths it is about 140, 160,
and 180 nm, respectively.

Although we only consider a hollow sample here, other
embedded surface structure with a dielectric constant less
than that of substrate medium should also exhibit a hollow
character in the force pattern because the force is reduced
by the negative polarization of sample (ε− εs)E(r).

On the contrary, an embedded structure with a larger
dielectric constant than that of substrate medium should
demonstrate a protrusion character in the force pattern,
similar to the case of the topographic surface structure.
This can be ascribed to the appearance of a positive po-
larization source (ε−εs)E(r). Such a qualitative prediction
is verified by our numerical simulations.

We assume that a cubic pad is embedded below the
surface and possesses a dielectric constant of ε = 5.0. The
3D perspective views of the normalized force signal for the
pad at different embedded depths as (a) d = 0, (b) d = 20,
and (c) d = 40 nm are depicted in Figures 4a, b, and c, re-
spectively. The tip is scanned at a fixed observation plane
of Z = 100 nm. We can see that the force pattern indeed
shows a protrusion right above the embedded structure.
It implies a secondary field source at this site, which is
a positive polarization. The force signal decays when the
embedded depth and thus the vertical tip-sample distance
increases. The maximum normalized force signal for three
embedded depths are (a) Im = 1.12, (b) Im = 1.06, and
(c) Im = 1.04, respectively. The corresponding apparent
size of the embedded pad is about 160, 180, and 200 nm,
respectively.

The force signal for the embedded structure is much
weaker compared with the force pattern shown in Figures
2a-c for the topographic surface structure. This can be
attributed to the screened effect of the substrate medium
to electrostatic interaction, which is related to the dielec-
tric constant of substrate medium εs as well as the image
factor γ2 = 2/(1 + εs) (See Eqs. (12 14, 16, 22)). This
screened effect decreases the local field inside the embed-
ded pad, thus the secondary field induced by the polar-
ization (ε− εs)E(r) is also greatly reduced. Therefore, the
force signal is much weaker than that of the topographic
structure, for which no screened effect exists. From this
point of view, one can identify these two kinds of surface
structures in terms of the measurement of SEFM, irre-
spective of the similarity between their force patterns.

The interference effect of signal between densely ar-
ranged sample particles appears in many kinds of scan-
ning near-field microscopies, and results in complexity and
confusion in interpreting the observed signal and correctly
extracting the surface structure information.

To demonstrate the interference effect of force in
SEFM quantitatively, we consider four closely arranged
identical cubic pads with their center located at the apexes
of a square. The sidelengths of each pad and the square are
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Fig. 4. 3D perspective view of the normalized force intensity
I = F/F0 for a cubic pad embedded in the substrate. The
probe is scanned at an observation plane of Z = 100 nm. The
pad has a sidelength of a = 100 nm and a dielectric constant of
ε = 5.0. The embedded depth of pad is (a) d = 0, (b) d = 20,
and (c) d = 40 nm, respectively.

100 and 200 nm, respectively. Figures 5a, b, and c display
respectively the electrostatic force patterns for three kinds
of surface structures: (a) topographic structure with a di-
electric constant of ε = 2.5; (b) embedded structure with
a dielectric constant of ε = 1.0 and an embedded depth of
d = 0; (c) embedded structure with a dielectric constant of
ε = 5.0 and an embedded depth of d = 0. The correspond-
ing observation planes are Z = 200, 100, and 100 nm,
respectively. The force patterns seem to be very close
to a simple superposition of the individual force signal
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Fig. 5. 3D perspective view of the normalized force inten-
sity I = F/F0 for four identical cubic pads with their cen-
ters located at the apexes of a square. The sidelength of each
pad and the square is 100 and 200 nm, respectively. (a) To-
pographic structure with a dielectric constant of ε = 2.5. (b)
Embedded hollow (vacuum) with an embedded depth of d = 0.
(c) Embedded dielectric structure with a dielectric constant
of ε = 5.0 and an embedded depth of d = 0. The probe is
scanned at an observation plane of (a) Z = 200, (b) Z = 100,
and (c) Z = 100 nm, respectively.
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of four single pads, which has been shown in Figures 2b,
3a, and 4a.

Detailed data analysis follows that the force pattern
of four pads is simply the superposition of the individual
signal of each pad in all cases of surface structures . Thus
it can be concluded that the interference effect in SEFM is
not remarkable. This also implies that the coupling effect
among various secondary field source is relatively weak.
The field distribution around each pad changes very little
in the presence of other pads. This phenomenon can be
attributed to the fast decaying character of an electric
field induced by the polarized sample in SEFM. The weak
interference effect in SEFM is quite helpful for the retrieval
of surface structure from the electrostatic force pattern.

4 Conclusions

We have applied a self-consistent method in a real-space
representation to calculate the electric field distribution
in a complex system composed of a conductive tip, sam-
ple, and substrate in SEFM, and evaluated the electro-
static force exerting on the tip. We consider two kinds
of surface structures, one is the topographic structure ly-
ing on the surface, the other is the dielectric structure
embedded in the substrate. For these two kinds of sur-
face structure, the same technique of Green’s function and
standard image charge approach are combined to obtain a
self-consistent integral equation, which is satisfied by a lo-
cal electric field in the surface structure and can be solved
numerically through a real-space discretization procedure.
The simulation results show that the electrostatic force
pattern can be well related to the surface structure. The
force pattern for the topographic structure shows a pro-
trusion around the surface structure. The force pattern for
the embedded dielectric structure demonstrates a hollow
around the structure with a dielectric constant less than
that of substrate medium. On the contrary, it appears a
protrusion around an embedded structure with a larger di-
electric constant than that of the substrate medium, but
such a force signal is much weaker than that of the to-
pographic structure. Therefore, one can distinguish these
surface structures from the analysis of the pure electro-
static force information in SEFM.

The interference effect of force is shown to be weak in
the SEFM. The force signal of densely arranged dielectric
pads is simply the superposition of individual force signal

of each pad alone. This superior character can be of help to
relate the force information to the surface structure appar-
ently. The self-consistent approach has been proven to be
effective in practice. The numerical calculations can pro-
vide detailed quantitative knowledge about the interaction
between a charged tip and various kinds of surface struc-
tures, thus this approach is quite useful to solve the diffi-
cult inverse problem in SEFM, i.e., to retrieve the surface
structure through the pure electrostatic force information.
However, more research works should be conducted for the
complete solution of such an inverse problem owing to its
complexity.

This work was supported by the National Natural Science
Foundation of China.
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